Natural Product Screening and Hit Characterization using Affinity Mass Spectrometry-Based Automated Ligand Identification System (ALIS)

Christine L. Andrews

Schering-Plough
320 Bent Street, Cambridge, MA 02141

CoSMoS 2009
Boston, MA
August 5, 2009
Outline

• Introduction to **Automated Ligand Identification System** (ALIS)
 – Screening tool
 – Affinity triage tool

• Application of ALIS to Natural Products (NP) Research
 – Sample suitability studies for NP extracts
 – Counter screening to isolate specific binders
 – Software tools to prevent replication
 – Triage methods to affinity rank newly discovered compounds
 – ALIS-MS/MS for structural elucidation of unknown NP hits
Automated Ligand Identification System (ALIS)

The ALIS system integrates six fundamental technologies:

- Affinity Selection
- Sample Automation
- Size Exclusion Chromatography
- Reverse Phase Chromatography
- Mass Spectrometry
- Data Analysis System
ALIS Workflow

Incubate Target protein (free in solution) with Mass-encoded libraries

Rapidly separate ligands bound to target from unbound library members by automated micro-scale SEC

Bulk Unbound Constituents to Waste

Capture complex & dissociate ligands from target; Previously Bound Ligands are analyzed by Reverse Phase LC – ESI ToF MS

ALIS software uniquely identifies ligand structure from mass information

Novobiocin
Chemical Formula: C₃₁H₃₆N₂O₁₁
Exact Mass: 612.2319

Chemical Structure:

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \\
\text{O} & \quad \text{H}_2\text{N} \\
\text{HO} & \quad \text{HO}
\end{align*}
\]

22-Mar-2007
15:48:06
1. TOF MS ESI+
612.23
1.11e4

12799660011
4.36
613.15

POC: Natural Product Screening by ALIS | SPRI-Cambridge | 4
ALIS: Unique Advantages for Natural Product Screening

• High sensitivity and broad dynamic range enable drug discovery and characterization from low-level components of complex mixtures

• SEC eliminates false positives due to non-specific binding

• Accurate mass measurements yield empirical formulas for NP database searches

• MS-MS provides structural data and allows MS-triggered purification and fingerprint matching

• Affinity estimates in complex mixtures enable rapid triage
 – Insensitive to component concentration
 – Triage hits before isolation, testing, & structure determination
Proof of Concept Goal: Determine the Feasibility of Screening Natural Product Extracts with ALIS

• Well-characterized target and known inhibitor
 – Gyrase-B (a Gyrase holoenzyme subunit)
 – Well-known target for antibiotic therapy
 – Soluble protein; Well-behaved in ALIS
 – Novobiocin
 – Aminocoumarin antibiotic isolated from actinomycete in the mid-1950s
 – Binds to the Gyrase-B subunit with nanomolar affinity
 – Inhibits ATPase activity

• Experimental design
 – Linearity and limits of detection of Novobiocin
 – Sample Suitability of Natural Product extracts from multiple sources
 – Analysis of endogenous Novobiocin in active NP extracts
 – Software tools
 – Affinity rank detected components
 – Identify novel components using ALIS-MS/MS
Novobiocin Standard Quantification by LC-MS/MS

- Standard Novobiocin (0.01 – 10µM) used to generate MS-MS fingerprint & calibration curve ($R^2 = 0.99957$)

Diagram
- LC-MS-MS Product Ion m/z 189.09
- LC-MS-MS TIC
- LC-MS Novobiocin m/z 613.2
- Isobaric Noise
- 189.1032
- 189.1064

Chemical Structure
- NO
- O
- O
- O
- O
- O
- O
- N
- O
- O
- O
- O
- O
- O
- N
- O

Data
- LC-MS: NO
- NO
- O
- O
- O
- O
- O
- O
- N
- O
- O
- O
- O
- O
- O
- N
- O
- 1455.19
- TOF MS/MS ES+
- 109
- 183
- TOF MS/MS ES+
- TIC
- 400
- TOF MS/ES+
- 613.2
- 365
- 365

Graphs
- Annotated peaks at m/z 189.09 and 613.2 with isobaric noise annotations.
Novobiocin Standard Analysis by ALIS-MS

- **K_d** determination: 0.01-125µM Novobiocin incubated with 2.0µM Gyrase-B
- ALIS binding conditions: 50 mM TRIS, pH 8.0, 40 mM KCl, 10 mM NaCl, 1 mM EDTA, 2 mM DTT, 4% glycerol.
- SEC (Agilent 1100): F = 450 µL/min, 700 mM Ammonium acetate, pH 8.0; SEC media produced in-house
- RPC (Agilent cap1100): F = 20µL/min, 0.2% Formic Acid in Water/Acetonitrile; 0.5x50mm Higgins C_{18} column
- MS: Waters LCT ESI-ToF
- ALIS limit of detection = < 0.008 µM
 - < 5 ng/mL
 - < 10 ppm of total NP extract mass
Sample Suitability of NP Extracts for ALIS: Screening Against Gyrase-B

Sample Preparation of Extracts

- 1-mg samples of NP extracts dissolved in 40 µL DMSO
 - 25 mg/mL final concentration
- ALIS sample preparation:
 - 1:20 buffer dilution, centrifugation
 - 1:1 dilution with buffer containing 5-10 µM Protein
 - Overall 1:40 dilution
- NP extract total mass = 0.625 mg/mL in 2.5% DMSO
 - 500 MW cmpd @ 100 ppm total mass = 0.125 µM (250 fmol in 2 µL)
 - ALIS limit-of-detection ≈50 fmol for most drug-like molecules

Robustness Set

- Sampling of 1500-member robustness set (no endogenous Novobiocin) was chosen at random, equally weighted to different sources
- Screened ± novobiocin at 0.5 µM
- Invertase screened side-by-side with Gyrase-B samples

SEC-UV Chromatogram

- Protein with bound ligands – transfer to RPC-MS
- Non-binding constituents transfer to waste
Sample Suitability of NP Extracts for ALIS: SEC Peak Quantification
Endogenous Novobiocin in Active NP Extracts: LC-MS/MS Quantification and ALIS-MS Screening with Gyrase-B

- Endogenous Novobiocin detected in active NP extracts at levels from 0.5 to 6 µM (0.3 to 3.6 µg/mL) after standard ALIS 1:40 dilution
- Novobiocin recovery in ALIS parallels its concentration in extracts
- Two samples purported to contain novobiocin are below LODs of both methods
- Novobiocin was not detected in active samples containing other NP
ALIS Screening of Gyrase-B against Active Extracts

<table>
<thead>
<tr>
<th>NP_extract</th>
<th>Target</th>
<th>Trunc_mass</th>
<th>measured_m/z</th>
<th>signal_strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2_Novo</td>
<td>Invertase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyrase B</td>
<td>599</td>
<td>599.2291</td>
<td>531.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>613</td>
<td>613.2415</td>
<td>4731.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>643</td>
<td>643.2570</td>
<td>1844.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>643.2571</td>
<td>1811.32</td>
<td></td>
</tr>
</tbody>
</table>

- Side-by-side screening of breakthrough control protein (Invertase) indicates very little SEC “breakthrough” or non-specific binding by NP extract components.
- Hits present in both samples are not of interest.
- Comparison enables identification of specific hits (e.g., novobiocin, 613) and detection of unknown entities (e.g., m/z 599 and 643).
ACE$_{50}$ Method: ALIS Competition Experiments

- ACE$_{50}$ value of the ligand is the [titrant] at which the ligand recovery is reduced by 50%.
- ACE$_{50}$ values depend on the K_d of the titrant and the ligand.
- If the receptor is present in excess, the ACE$_{50}$ value is insensitive to the concentration of the unknown.
Gyrase-B ACE₅₀ Experiments: Standards and Active NP Extract

- Coumermycin is directly competitive with Novobiocin
- Two new hits detected in active extract with weaker affinity than Novobiocin
 - \(m/z \) 599.2241,
 - \(\text{Novobiocin} - \text{CH}_3 \) ?
 - \(\Delta \text{ppm} = -6.3 \pm 10.2, n = 13 \)
 - \(m/z \) 643.2503
 - \(\text{Novobiocin} + \text{CH}_3\text{O} \) ?
 - \(\Delta \text{ppm} = 0.0 \pm 11.3, n = 19 \)
ALIS-MS/MS Identification of New Hits from Active NP Extract

Novobiocin

m/z 599 A

m/z 599 B

m/z 643
ALIS-MS/MS Identification of New Hits from Active NP Extract

![Graphs showing EIC profiles and molecular structures for m/z 613, 599, and 643, along with corresponding TIC values and peak times.]

- **EIC:** m/z 613 with TIC: 2.45e3 at 4.91
- **EIC:** m/z 599 with TIC: 193 at 4.73 and 4.84
- **EIC:** m/z 643 with TIC: 619 at 4.96

Novobiocin

(A) Early peak of m/z 599

(B) Late peak of m/z 599
ALIS-based Affinity Ranking: Absolute K_d Determination

- ACE_{50} curves enables K_d estimates
- Spike internal calibrants of known K_d into mixture (e.g. NP extract)
- Compare the calibrant ACE_{50} values to those of the other mixture components
- Plotting calibrant ACE_{50} values versus their known K_d values yields absolute K_d values of unknown
Calibrants Spiked into NP Extract to Determine Absolute K_d for New Hits

- By plotting known K_d values vs. ACE$_{50}$ values, it is possible to calculate the K_d values of the unknowns
- All 3 unknowns K_d values are $\sim 0.1\mu M$
- This ALIS ACE$_{50}$ method distinguishes between two unknowns with the same molecular weight and different affinities
Conclusions

• ALIS can identify target-specific ligands from Natural Product extracts
 – Sample preparation is simple; Amenable to automation
 – Protein SEC behavior is acceptable
 – Individual component limit-of-detection is 10-100 ppm of crude extract

• Ability to select of target-specific ligands via counter-screening
 – Eliminates non-specific hits
 – Conserves resources

• Hit triage is demonstrated by ALIS ACE\textsubscript{50} experiments prior to purification and using minimal amounts of protein and crude extract
 – Determination of relative affinity
 – Accurate mass information and MS/MS characterization
 – Affinity ranking with internal calibrants allows absolute K_d determination

• **Successful Proof of Concept: ALIS is a unique technology with several advantages for Natural Product drug discovery**
Acknowledgements

D. Allen Annis
Todd Black
Scott Walker

Merlion Pharmaceuticals
Mark Butler
Martin Everett

Agilent Technologies
Elaine Ricicki

Xianshu Yang
John Piwinski
A. Patchett
A. K. Ganguly

Vaneet Aggarwal
Ryan Boinay
Chad Chamberlin
Charlie Chang
Cheng-Chi Chuang
Aaron Griswold
Will Lee
Elliot Nickbarg
Mark Pietrafitta
Berengere Sauvagnat
Wenhong Yu
Mingxuan Zhang
Michael Ziebell